点击上方“Java知音”,选择“置顶公众号”
技术文章第一时间送达!
相关文章
简介
HashMap最早出现在JDK1.2中,底层基于散列算法实现。HashMap 允许 null 键和 null 值,是非线程安全类,在多线程环境下可能会存在问题。
1.8版本的HashMap数据结构:
为什么有的是链表有的是红黑树?
默认链表长度大于8时转为树
结构
Node是HhaspMap中的一个静态内部类 :
//Node是单向链表,实现了Map.Entry接口
static class NodeK,V implements Map.EntryK,V {
final int hash;
final K key;
V value;
NodeK,V next;
//构造函数
Node(int hash, K key, V value, NodeK,V next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
// getter and setter ... toString ...
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry?,? e = (Map.Entry?,?)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
TreeNode 是红黑树的数据结构。
static final class TreeNodeK,V extends LinkedHashMap.EntryK,V {
TreeNodeK,V parent; // red-black tree links
TreeNodeK,V left;
TreeNodeK,V right;
TreeNodeK,V prev; // needed to unlink next upon deletion
boolean red;
TreeNode(int hash, K key, V val, NodeK,V next) {
super(hash, key, val, next);
}
/**
* Returns root of tree containing this node.
*/
final TreeNodeK,V root() {
for (TreeNodeK,V r = this, p;;) {
if ((p = r.parent) == null)
return r;
r = p;
}
}
类定义
public class HashMapK,V extends AbstractMapK,V
implements MapK,V, Cloneable, Serializable
变量
/**
* 默认初始容量16(必须是2的幂次方)
*/
static final int DEFAULT_INITIAL_CAPACITY = 1 4;
/**
* 最大容量,2的30次方
*/
static final int MAXIMUM_CAPACITY = 1 30;
/**
* 默认加载因子,用来计算threshold
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;
/**
* 链表转成树的阈值,当桶中链表长度大于8时转成树
threshold = capacity * loadFactor
*/
static final int TREEIFY_THRESHOLD = 8;
/**
* 进行resize操作时,若桶中数量少于6则从树转成链表
*/
static final int UNTREEIFY_THRESHOLD = 6;
/**
* 桶中结构转化为红黑树对应的table的最小大小
当需要将解决 hash 冲突的链表转变为红黑树时,
需要判断下此时数组容量,
若是由于数组容量太小(小于 MIN_TREEIFY_CAPACITY )
导致的 hash 冲突太多,则不进行链表转变为红黑树操作,
转为利用 resize() 函数对 hashMap 扩容
*/
static final int MIN_TREEIFY_CAPACITY = 64;
/**
保存NodeK,V节点的数组
该表在首次使用时初始化,并根据需要调整大小。 分配时,
长度始终是2的幂。
*/
transient NodeK,V[] table;
/**
* 存放具体元素的集
*/
transient SetMap.EntryK,V entrySet;
/**
* 记录 hashMap 当前存储的元素的数量
*/
transient int size;
/**
* 每次更改map结构的计数器
*/
transient int modCount;
/**
* 临界值 当实际大小(容量*填充因子)超过临界值时,会进行扩容
*/
int threshold;
/**
* 负载因子:要调整大小的下一个大小值(容量*加载因子)。
*/
final float loadFactor;
构造方法
/**
* 传入初始容量大小,使用默认负载因子值 来初始化HashMap对象
*/
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
/**
* 默认容量和负载因子
*/
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
/**
* 传入初始容量大小和负载因子 来初始化HashMap对象
*/
public HashMap(int initialCapacity, float loadFactor) {
// 初始容量不能小于0,否则报错
if (initialCapacity 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
// 初始容量不能大于最大值,否则为最大值
if (initialCapacity MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
//负载因子不能小于或等于0,不能为非数字
if (loadFactor = 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
// 初始化负载因子
this.loadFactor = loadFactor;
// 初始化threshold大小
this.threshold = tableSizeFor(initialCapacity);
}
/**
* 找到大于或等于 cap 的最小2的整数次幂的数。
*/
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n 1;
n |= n 2;
n |= n 4;
n |= n 8;
n |= n 16;
return (n 0) ? 1 : (n = MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
tableSizeFor方法详解:
用位运算找到大于或等于 cap 的最小2的整数次幂的数。比如10,则返回16
附带一个实例:
loadFactor 负载因子
对于 HashMap 来说,负载因子是一个很重要的参数,该参数反应了 HashMap 桶数组的使用情况。通过调节负载因子,可使 HashMap 时间和空间复杂度上有不同的表现。
当我们调低负载因子时,HashMap 所能容纳的键值对数量变少。扩容时,重新将键值对存储新的桶数组里,键的键之间产生的碰撞会下降,链表长度变短。此时,HashMap 的增删改查等操作的效率将会变高,这里是典型的拿空间换时间。
相反,如果增加负载因子(负载因子可以大于1),HashMap 所能容纳的键值对数量变多,空间利用率高,但碰撞率也高。这意味着链表长度变长,效率也随之降低,这种情况是拿时间换空间。至于负载因子怎么调节,这个看使用场景了。
一般情况下,我们用默认值就可以了。大多数情况下0.75在时间跟空间代价上达到了平衡所以不建议修改。
查找
public V get(Object key) {
NodeK,V e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
// 获取hash值
static final int hash(Object key) {
int h;
// 拿到key的hash值后与其五符号右移16位取与
// 通过这种方式,让高位数据与低位数据进行异或,以此加大低位信息的随机性,变相的让高位数据参与到计算中。
return (key == null) ? 0 : (h = key.hashCode()) ^ (h 16);
}
final NodeK,V getNode(int hash, Object key) {
NodeK,V[] tab;
NodeK,V first, e;
int n; K k;
// 定位键值对所在桶的位置
if ((tab = table) != null && (n = tab.length) 0 &&
(first = tab[(n - 1) & hash]) != null) {
// 判断桶中第一项(数组元素)相等
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
// 桶中不止一个结点
if ((e = first.next) != null) {
// 是否是红黑树,是的话调用getTreeNode方法
if (first instanceof TreeNode)
return ((TreeNodeK,V)first).getTreeNode(hash, key);
// 不是红黑树的话,在链表中遍历查找
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
注意:
添加
public V put(K key, V value) {
// 调用hash(key)方法来计算hash
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
NodeK,V[] tab;
NodeK,V p;
int n, i;
// 容量初始化:当table为空,则调用resize()方法来初始化容器
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//确定元素存放在哪个桶中,桶为空,新生成结点放入桶中
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
NodeK,V e; K k;
// 比较桶中第一个元素(数组中的结点)的hash值相等,key相等
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
//如果键的值以及节点 hash 等于链表中的第一个键值对节点时,则将 e 指向该键值对
e = p;
// 如果桶中的引用类型为 TreeNode,则调用红黑树的插入方法
else if (p instanceof TreeNode)
// 放入树中
e = ((TreeNodeK,V)p).putTreeVal(this, tab, hash, key, value);
else {
//对链表进行遍历,并统计链表长度
for (int binCount = 0; ; ++binCount) {
// 到达链表的尾部
if ((e = p.next) == null) {
//在尾部插入新结点
p.next = newNode(hash, key, value, null);
// 如果结点数量达到阈值,转化为红黑树
if (binCount = TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
// 判断链表中结点的key值与插入的元素的key值是否相等
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//判断要插入的键值对是否存在 HashMap 中
if (e != null) { // existing mapping for key
V oldValue = e.value;
// onlyIfAbsent 表示是否仅在 oldValue 为 null 的情况下更新键值对的值
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
// 键值对数量超过阈值时,则进行扩容
if (++size threshold)
resize();
afterNodeInsertion(evict);
return null;
}
事实上,
new HashMap();
完成后,如果没有
put
操作,是不会分配存储空间的。
扩容机制
在 HashMap 中,桶数组的长度均是2的幂,阈值大小为桶数组长度与负载因子的乘积。当 HashMap 中的键值对数量超过阈值时,进行扩容。
HashMap 按当前桶数组长度的2倍进行扩容,阈值也变为原来的2倍(如果计算过程中,阈值溢出归零,则按阈值公式重新计算)。扩容之后,要重新计算键值对的位置,并把它们移动到合适的位置上去。
final NodeK,V[] resize() {
// 拿到数组桶
NodeK,V[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
// 如果数组桶的容量大与0
if (oldCap 0) {
// 如果比最大值还大,则赋值为最大值
if (oldCap = MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 如果扩容后小于最大值 而且 旧数组桶大于初始容量16, 阈值左移1(扩大2倍)
else if ((newCap = oldCap 1) MAXIMUM_CAPACITY &&
oldCap = DEFAULT_INITIAL_CAPACITY)
newThr = oldThr 1; // double threshold
}
// 如果数组桶容量=0 且 旧阈值 0
else if (oldThr 0) // initial capacity was placed in threshold
// 新容量=旧阈值
newCap = oldThr;
// 如果数组桶容量=0 且 旧阈值 =0
else { // zero initial threshold signifies using defaults
// 新容量=默认容量
newCap = DEFAULT_INITIAL_CAPACITY;
// 新阈值= 负载因子*默认容量
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 如果新阈值为0
if (newThr == 0) {
// 重新计算阈值
float ft = (float)newCap * loadFactor;
newThr = (newCap MAXIMUM_CAPACITY && ft (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
// 更新阈值
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
// 创建新数组
NodeK,V[] newTab = (NodeK,V[])new Node[newCap];
// 覆盖数组桶
table = newTab;
// 如果旧数组桶不是空,则遍历桶数组,并将键值对映射到新的桶数组中
if (oldTab != null) {
for (int j = 0; j oldCap; ++j) {
NodeK,V e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
// 如果是红黑树
else if (e instanceof TreeNode)
// 重新映射时,需要对红黑树进行拆分
((TreeNodeK,V)e).split(this, newTab, j, oldCap);
else { // preserve order
// 如果不是红黑树,则按链表处理
NodeK,V loHead = null, loTail = null;
NodeK,V hiHead = null, hiTail = null;
NodeK,V next;
// 遍历链表,并将链表节点按原顺序进行分组
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// 将分组后的链表映射到新桶中
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
整体步骤:
总结起来,一共有三种扩容方式:
细心点的人会很好奇,为什么要判断loadFactor为0呢?
loadFactor小数位为 0,整数位可被2整除且大于等于8时,在某次计算中就可能会导致 newThr 溢出归零。
疑问和进阶
1. JDK1.7是基于数组+单链表实现(为什么不用双链表)
首先,用链表是为了解决hash冲突。
单链表能实现为什么要用双链表呢?(双链表需要更大的存储空间)
2. 为什么要用红黑树,而不用平衡二叉树?
插入效率比平衡二叉树高,查询效率比普通二叉树高。所以选择性能相对折中的红黑树。
3. 重写对象的Equals方法时,要重写hashCode方法,为什么?跟HashMap有什么关系?
equals与hashcode间的关系:
因为在 HashMap 的链表结构中遍历判断的时候,特定情况下重写的 equals 方法比较对象是否相等的业务逻辑比较复杂,循环下来更是影响查找效率。所以这里把 hashcode 的判断放在前面,只要 hashcode 不相等就玩儿完,不用再去调用复杂的 equals 了。很多程度地提升 HashMap 的使用效率。
所以重写 hashcode 方法是为了让我们能够正常使用 HashMap 等集合类,因为 HashMap 判断对象是否相等既要比较 hashcode 又要使用 equals 比较。而这样的实现是为了提高 HashMap 的效率。
附上源码图:
- HashMap为什么不直接使用对象的原始hash值呢?
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h 16);
}
我们发现,HashMap的哈希值是通过上面的方式获取,而不是通过
key.hashCode()
方法获取。
原因:
通过移位和异或运算,可以让 hash 变得更复杂,进而影响 hash 的分布性。
5. 既然红黑树那么好,为啥hashmap不直接采用红黑树,而是当大于8个的时候才转换红黑树?
因为红黑树需要进行左旋,右旋操作, 而单链表不需要。
以下都是单链表与红黑树结构对比。
如果元素小于8个,查询成本高,新增成本低。
如果元素大于8个,查询成本低,新增成本高。
至于为什么选数字8,是大佬折中衡量的结果-.-,就像loadFactor默认值0.75一样。
加入Java知音技术交流,戳这里:Springboot技术交流群
更多Java技术文章,尽在【Java知音】网站。
网址:www.javazhiyin.com ,搜索Java知音可达!
看完本文有收获?请转发分享给更多人
原文始发于微信公众号(Java知音):面试必会之HashMap源码分析