SpringBoot 高效数据聚合之道

本人花费半年的时间总结的《Java面试指南》已拿腾讯等大厂offer,已开源在github ,欢迎star!

本文GitHub https://github.com/OUYANGSIHAI/JavaInterview 已收录,这是我花了6个月总结的一线大厂Java面试总结,本人已拿大厂offer,欢迎star

原文链接:blog.ouyangsihai.cn >> SpringBoot 高效数据聚合之道

点击上方“后端技术精选”,选择“置顶公众号”

技术文章第一时间送达!

作者:Feego

juejin.im/post/5d064b90e51d45777540fda7

阅**(点击即可跳转阅读)**

1. 

**2. **

**3. **

**4. **

**5. **

背景

接口开发是后端开发中最常见的场景, 可能是RESTFul接口, 也可能是RPC接口. 接口开发往往是从各处捞出数据, 然后组装成结果, 特别是那些偏业务的接口.

如何方便快速的开发高性能的接口, 是一个必须思考的问题.

例如, 我现在需要实现一个接口, 拉取用户基础信息+用户的博客列表+用户的粉丝数据的整合数据, 假设已经有如下三个接口可以使用, 分别用来获取 用户基础信息 ,用户博客列表, 用户的粉丝数据.

用户基础信息


@Service
public class UserServiceImpl implements UserService {
    @Override
    public User get(Long id) {
        try {Thread.sleep(1000L);} catch (InterruptedException e) {}
        /* mock a user*/
        User user = new User();
        user.setId(id);
        user.setEmail("lvyahui8@gmail.com");
        user.setUsername("lvyahui8");
        return user;
    }
}

用户博客列表


@Service
public class PostServiceImpl implements PostService {
    @Override
    public ListPost getPosts(Long userId) {
        try { Thread.sleep(1000L); } catch (InterruptedException e) {}
        Post post = new Post();
        post.setTitle("spring data aggregate example");
        post.setContent("No active profile set, falling back to default profiles");
        return Collections.singletonList(post);
    }
}

用户的粉丝数据


@Service
public class FollowServiceImpl implements FollowService {
    @Override
    public ListUser getFollowers(Long userId) {
        try { Thread.sleep(1000L); } catch (InterruptedException e) {}
        int size = 10;
        ListUser users = new ArrayList(size);
        for(int i = 0 ; i  size; i++) {
            User user = new User();
            user.setUsername("name"+i);
            user.setEmail("email"+i+"@fox.com");
            user.setId((long) i);
            users.add(user);
        };
        return users;
    }
}

注意, 每一个方法都sleep了1s以模拟业务耗时.

我们需要再封装一个接口, 来拼装以上三个接口的数据.

PS: 这样的场景实际在工作中很常见, 而且往往我们需要拼凑的数据, 是要走网络请求调到第三方去的. 另外可能有人会想, 为何不分成3个请求? 

实际为了客户端网络性能考虑, 往往会在一次网络请求中, 尽可能多的传输数据, 当然前提是这个数据不能太大, 否则传输的耗时会影响渲染. 许多APP的首页, 看着复杂, 实际也只有一个接口, 一次性拉下所有数据, 客户端开发也简单.

串行实现

编写性能优良的接口不仅是每一位后端程序员的技术追求, 也是业务的基本诉求. 一般情况下, 为了保证更好的性能, 往往需要编写更复杂的代码实现.

但凡人皆有惰性, 因此, 往往我们会像下面这样编写串行调用的代码


@Component
public class UserQueryFacade {
    @Autowired
    private FollowService followService;
    @Autowired
    private PostService postService;
    @Autowired
    private UserService userService;

    public User getUserData(Long userId) {
        User user = userService.get(userId);
        user.setPosts(postService.getPosts(userId));
        user.setFollowers(followService.getFollowers(userId));
        return user;
    }
}

很明显, 上面的代码, 效率低下, 起码要3s才能拿到结果, 且一旦用到某个接口的数据, 便需要注入相应的service, 复用麻烦.

并行实现

有追求的程序员可能立马会考虑到**, 这几项数据之间并无强依赖性, 完全可以并行获取**嘛, 通过异步线程+CountDownLatch+Future实现,就像下面这样.


@Component
public class UserQueryFacade {
    @Autowired
    private FollowService followService;
    @Autowired
    private PostService postService;
    @Autowired
    private UserService userService;

    public User getUserDataByParallel(Long userId) throws InterruptedException, ExecutionException {
        ExecutorService executorService = Executors.newFixedThreadPool(3);
        CountDownLatch countDownLatch = new CountDownLatch(3);
        FutureUser userFuture = executorService.submit(() - {
            try{
                return userService.get(userId);
            }finally {
                countDownLatch.countDown();
            }
        });
        FutureListPost postsFuture = executorService.submit(() - {
            try{
                return postService.getPosts(userId);
            }finally {
                countDownLatch.countDown();
            }
        });
        FutureListUser followersFuture = executorService.submit(() - {
            try{
                return followService.getFollowers(userId);
            }finally {
                countDownLatch.countDown();
            }
        });
        countDownLatch.await();
        User user = userFuture.get();
        user.setFollowers(followersFuture.get());
        user.setPosts(postsFuture.get());
        return user;
    }
}

上面的代码, **将串行调用改为并行调用, 在有限并发级别下, 能极大提高性能. **但很明显, 它过于复杂, 如果每个接口都为了并行执行都写这样一段代码, 简直是噩梦.

优雅的注解实现

熟悉java的都知道, java有一种非常便利的特性 ~~ 注解. 简直是黑魔法. 往往只需要给类或者方法上添加一些注解, 便可以实现非常复杂的功能.

有了注解, 再结合Spring依赖自动注入的思想, 那么我们可不可以通过注解的方式, 自动注入依赖, 自动并行调用接口呢? 答案是肯定的.

首先, 我们先定义一个聚合接口 (当然也可以不定义聚合类, 所有代码写在原Service类中同样可以)


@Component
public class UserAggregate {
    @DataProvider("userFullData")
    public User userFullData(@DataConsumer("user") User user,
                             @DataConsumer("posts") ListPost posts,
                             @DataConsumer("followers") ListUser followers) {
        user.setFollowers(followers);
        user.setPosts(posts);
        return user;
    }
}

其中

  • @DataProvider 表示这个方法是一个数据提供者, 数据Id为 userFullData
  • @DataConsumer 表示这个方法的参数, 需要消费数据, 数据Id分别为 user ,posts, followers.
  • @DataConsumer 表示这个方法的参数, 需要消费数据, 数据Id分别为 user ,posts, followers.

    当然, 原来的3个原子服务 用户基础信息 ,用户博客列表, 用户的粉丝数据, 也分别需要添加一些注解

    
    @Service
    public class UserServiceImpl implements UserService {
        @DataProvider("user")
        @Override
        public User get(@InvokeParameter("userId") Long id) {
    
    
    @Service
    public class PostServiceImpl implements PostService {
        @DataProvider("posts")
        @Override
        public ListPost getPosts(@InvokeParameter("userId") Long userId) {
    
    
    @Service
    public class FollowServiceImpl implements FollowService {
        @DataProvider("followers")
        @Override
        public ListUser getFollowers(@InvokeParameter("userId") Long userId) {
    

    其中

  • @DataProvider 与前面的含义相同, 表示这个方法是一个数据提供者
  • @InvokeParameter 表示方法执行时, 需要手动传入的参数
  • @InvokeParameter 表示方法执行时, 需要手动传入的参数

    这里注意 @InvokeParameter 和 @DataConsumer的区别, 前者需要用户在最上层调用时手动传参; 而后者, 是由框架自动分析依赖, 并异步调用取得结果之后注入的.

    最后, 仅仅只需要调用一个统一的门面(Facade)接口, 传递数据Id, Invoke Parameters,以及返回值类型. 剩下的并行处理, 依赖分析和注入, 完全由框架自动处理.

    
    @Component
    public class UserQueryFacade {
        @Autowired
        private DataBeanAggregateQueryFacade dataBeanAggregateQueryFacade;
    
        public User getUserFinal(Long userId) throws InterruptedException, 
                    IllegalAccessException, InvocationTargetException {
            return dataBeanAggregateQueryFacade.get("userFullData",
                    Collections.singletonMap("userId", userId), User.class);
        }
    }
    

    如何用在你的项目中

    上面的功能, 笔者已经封装为一个spring boot starter, 并发布到maven中央仓库.

    只需在你的项目引入依赖.

    
    dependency
      groupIdio.github.lvyahui8/groupId
      artifactIdspring-boot-data-aggregator-starter/artifactId
      version1.0.2/version
    /dependency
    

    并在 application.properties 文件中声明注解的扫描路径.

    
    # 替换成你需要扫描注解的包
    io.github.lvyahui8.spring.base-packages=io.github.lvyahui8.spring.example
    

    之后, 就可以使用如下注解和 Spring Bean 实现聚合查询

  • @DataProvider
  • @DataConsumer
  • @InvokeParameter
  • Spring Bean DataBeanAggregateQueryFacade
  • @DataConsumer

    Spring Bean DataBeanAggregateQueryFacade

    注意, @DataConsumer 和 @InvokeParameter 可以混合使用, 可以用在同一个方法的不同参数上. 且方法的所有参数必须有其中一个注解, 不能有没有注解的参数.

    项目地址和上述示例代码:

    https://github.com/lvyahui8/spring-boot-data-aggregator


    看到这里了,关注一个?

    SpringBoot 高效数据聚合之道

    原文始发于微信公众号(后端技术精选):

    本人花费半年的时间总结的《Java面试指南》已拿腾讯等大厂offer,已开源在github ,欢迎star!

    本文GitHub https://github.com/OUYANGSIHAI/JavaInterview 已收录,这是我花了6个月总结的一线大厂Java面试总结,本人已拿大厂offer,欢迎star

    原文链接:blog.ouyangsihai.cn >> SpringBoot 高效数据聚合之道


     上一篇
    彻底透析SpringBoot jar可执行原理 彻底透析SpringBoot jar可执行原理
    点击上方“后端技术精选”,选择“置顶公众号” 技术文章第一时间送达! 作者:plz叫我红领巾 juejin.im/post/5d2d6812e51d45777b1a3e5a 推荐阅**读(点击即可跳转阅读)** 1.  **
    下一篇 
    Spring Boot 注解——全家桶快速通 Spring Boot 注解——全家桶快速通
    点击上方“蓝色文字”,选择“置顶公众号” 技术文章第一时间送达! 作者:谭朝红 链接:https://www.ramostear.com/ 1、Spring Web MVC 与Spring Bean 注解1-1、Spring