【237期】面试官——如何发现 Redis 热点 Key ,解决方案有哪些?

本人花费半年的时间总结的《Java面试指南》已拿腾讯等大厂offer,已开源在github ,欢迎star!

本文GitHub https://github.com/OUYANGSIHAI/JavaInterview 已收录,这是我花了6个月总结的一线大厂Java面试总结,本人已拿大厂offer,欢迎star

原文链接:blog.ouyangsihai.cn >> 【237期】面试官——如何发现 Redis 热点 Key ,解决方案有哪些?

【237期】面试官:如何发现 Redis 热点 Key ,解决方案有哪些?

热点问题概述

产生原因

热点问题产生的原因大致有以下两种:

  • 用户消费的数据远大于生产的数据(热卖商品、热点新闻、热点评论、明星直播)。 在日常工作生活中一些突发的的事件,例如:双十一期间某些热门商品的降价促销,当这其中的某一件商品被数万次点击浏览或者购买时,会形成一个较大的需求量,这种情况下就会造成热点问题。同理,被大量刊发、浏览的热点新闻、热点评论、明星直播等,这些典型的读多写少的场景也会产生热点问题。
  • 请求分片集中,超过单 Server 的性能极限。 在服务端读数据进行访问时,往往会对数据进行分片切分,此过程中会在某一主机 Server 上对相应的 Key 进行访问,当访问超过 Server 极限时,就会导致热点 Key 问题的产生。
  • 热点问题的危害

    【237期】面试官:如何发现 Redis 热点 Key ,解决方案有哪些?
  • 流量集中,达到物理网卡上限。
  • 请求过多,缓存分片服务被打垮。
  • DB 击穿,引起业务雪崩。
  • 如前文讲到的,当某一热点 Key 的请求在某一主机上超过该主机网卡上限时,由于流量的过度集中,会导致服务器中其它服务无法进行。如果热点过于集中,热点 Key 的缓存过多,超过目前的缓存容量时,就会导致缓存分片服务被打垮现象的产生。当缓存服务崩溃后,此时再有请求产生,会缓存到后台 DB 上,由于DB 本身性能较弱,在面临大请求时很容易发生请求穿透现象,会进一步导致雪崩现象,严重影响设备的性能。

    常见解决方案

    通常的解决方案主要集中在对客户端和 Server 端进行相应的改造。

    服务端缓存方案

    【237期】面试官:如何发现 Redis 热点 Key ,解决方案有哪些?

    首先 Client 会将请求发送至 Server 上,而 Server 又是一个多线程的服务,本地就具有一个基于 Cache LRU 策略的缓存空间。当 Server 本身就拥堵时,Server 不会将请求进一步发送给 DB 而是直接返回,只有当 Server 本身畅通时才会将 Client 请求发送至 DB,并且将该数据重新写入到缓存中。此时就完成了缓存的访问跟重建。

    但该方案也存在以下问题:

  • 缓存失效,多线程构建缓存问题
  • 缓存丢失,缓存构建问题
  • 脏读问题
  • 使用 Memcache、Redis 方案

    【237期】面试官:如何发现 Redis 热点 Key ,解决方案有哪些?

    该方案通过在客户端单独部署缓存的方式来解决热点 Key 问题。使用过程中 Client 首先访问服务层,再对同一主机上的缓存层进行访问。该种解决方案具有就近访问、速度快、没有带宽限制的优点,但是同时也存在以下问题。

  • 内存资源浪费
  • 脏读问题
  • 使用本地缓存方案

    使用本地缓存则存在以下问题:

  • 需要提前获知热点
  • 缓存容量有限
  • 不一致性时间增长
  • 热点 Key 遗漏
  • 传统的热点解决方案都存在各种各样的问题,那么究竟该如何解决热点问题呢?

    阿里云数据库解热点之道

    读写分离方案解决热读

    【237期】面试官:如何发现 Redis 热点 Key ,解决方案有哪些?

    架构中各节点的作用如下:

  • SLB 层做负载均衡
  • Proxy 层做读写分离自动路由
  • Master 负责写请求
  • ReadOnly 节点负责读请求
  • Slave 节点和 Master 节点做高可用
  • 实际过程中 Client 将请求传到 SLB,SLB 又将其分发至多个 Proxy 内,通过 Proxy 对请求的识别,将其进行分类发送。例如,将同为 Write 的请求发送到 Master 模块内,而将 Read 的请求发送至 ReadOnly 模块。而模块中的只读节点可以进一步扩充,从而有效解决热点读的问题。读写分离同时具有可以灵活扩容读热点能力、可以存储大量热点Key、对客户端友好等优点。

    热点数据解决方案

    【237期】面试官:如何发现 Redis 热点 Key ,解决方案有哪些?

    该方案通过主动发现热点并对其进行存储来解决热点 Key 的问题。首先 Client 也会访问 SLB,并且通过 SLB 将各种请求分发至 Proxy 中,Proxy 会按照基于路由的方式将请求转发至后端的 Redis 中。

    在热点 key 的解决上是采用在服务端增加缓存的方式进行。具体来说就是在 Proxy 上增加本地缓存,本地缓存采用 LRU 算法来缓存热点数据,后端 db 节点增加热点数据计算模块来返回热点数据。

    Proxy 架构的主要有以下优点:

  • Proxy 本地缓存热点,读能力可水平扩展
  • DB 节点定时计算热点数据集合
  • DB 反馈 Proxy 热点数据
  • 对客户端完全透明,不需做任何兼容
  • 热点 key 处理

    热点数据的读取

    【237期】面试官:如何发现 Redis 热点 Key ,解决方案有哪些?

    在热点 Key 的处理上主要分为写入跟读取两种形式,在数据写入过程当 SLB 收到数据 K1 并将其通过某一个 Proxy 写入一个 Redis,完成数据的写入。假若经过后端热点模块计算发现 K1 成为热点 key 后, Proxy 会将该热点进行缓存,当下次客户端再进行访问 K1 时,可以不经 Redis。最后由于 proxy 是可以水平扩充的,因此可以任意增强热点数据的访问能力。

    热点数据的发现

    【237期】面试官:如何发现 Redis 热点 Key ,解决方案有哪些?

    对于 db 上热点数据的发现,首先会在一个周期内对 Key 进行请求统计,在达到请求量级后会对热点 Key 进行热点定位,并将所有的热点 Key 放入一个小的 LRU 链表内,在通过 Proxy 请求进行访问时,若 Redis 发现待访点是一个热点,就会进入一个反馈阶段,同时对该数据进行标记。

    DB 计算热点时,主要运用的方法和优势有:

  • 基于统计阀值的热点统计
  • 基于统计周期的热点统计
  • 基于版本号实现的无需重置初值统计方法
  • DB 计算同时具有对性能影响极其微小、内存占用极其微小等优点
  • 两种方案对比

    通过上述对比分析可以看出,阿里云在解决热点 Key 上较传统方法相比都有较大的提高,无论是基于读写分离方案还是热点数据解决方案,在实际处理环境中都可以做灵活的水平能力扩充、都对客户端透明、都有一定的数据不一致性。此外读写分离模式可以存储更大量的热点数据,而基于 Proxy 的模式有成本上的优势。

    **来源:https://github.com/AlibabaCloudDocs**

    END

    十期推荐










    与其在网上拼命找题?** 不如马上关注我们~**

    【237期】面试官:如何发现 Redis 热点 Key ,解决方案有哪些?

    原文始发于微信公众号(Java面试题精选):

    本人花费半年的时间总结的《Java面试指南》已拿腾讯等大厂offer,已开源在github ,欢迎star!

    本文GitHub https://github.com/OUYANGSIHAI/JavaInterview 已收录,这是我花了6个月总结的一线大厂Java面试总结,本人已拿大厂offer,欢迎star

    原文链接:blog.ouyangsihai.cn >> 【237期】面试官——如何发现 Redis 热点 Key ,解决方案有哪些?


     上一篇
    【236期】面试官——线程池中多余的线程是如何回收的? 【236期】面试官——线程池中多余的线程是如何回收的?
    最近阅读了JDK线程池ThreadPoolExecutor的源码,对线程池执行任务的流程有了大体了解,实际上这个流程也十分通俗易懂,就不再赘述了,别人写的比我好多了。 不过,我倒是对线程池是如何回收工作线程比较感兴趣,所以简单分析了一下
    2021-04-05
    下一篇 
    【238期】面试官——Redis新版本开始引入多线程,谈谈你的看法? 【238期】面试官——Redis新版本开始引入多线程,谈谈你的看法?
    Redis作为一个基于内存的缓存系统,一直以高性能著称,因没有上下文切换以及无锁操作,即使在单线程处理情况下,读速度仍可达到11万次/s,写速度达到8.1万次/s。但是,单线程的设计也给Redis带来一些问题:
    2021-04-05