pandas教程:pandas主要功能详解

本人花费半年的时间总结的《Java面试指南》已拿腾讯等大厂offer,已开源在github ,欢迎star!

本文GitHub https://github.com/OUYANGSIHAI/JavaInterview 已收录,这是我花了6个月总结的一线大厂Java面试总结,本人已拿大厂offer,欢迎star

原文链接:blog.ouyangsihai.cn >> pandas教程:pandas主要功能详解

pandas基本功能

将文件数据导入Pandas

通过pandas提供的read_xxx相关的函数可以读取文件中的数据,并形成DataFrame,常用的数据读取方法为: read_csv,主要可以读取文本类型的数据


df =pd.read_csv("Counts.csv", header=0)
df.head()

选择/切片

df[‘column_name’] ,df[row_start_index, row_end_index] 选取指定整列数据


df['name']   # 选取一列,成一个series   
df[['name']]  # 选取一列,成为一个dataframe     
df[['name','gender']] #选取多列,多列名字要放在list里    
df[0:]  #第0行及之后的行,相当于df的全部数据,注意冒号是必须的    
df[:2]  #第2行之前的数据(不含第2行)    
df[0:1] #第0行    
df[1:3] #第1行到第2行(不含第3行)    
df[-1:] #最后一行    
df[-3:-1] #倒数第3行到倒数第1行(不包含最后1行即倒数第1行,这里有点烦躁,因为从前数时从第0行开始,从后数就是-1行开始,毕竟没有-0

loc,在知道列名字的情况下,df.loc[index,column] 选取指定行,列的数据


# df.loc[index, column_name],选取指定行和列的数据    
df.loc[0,'name'] # 'Snow'    
df.loc[0:2, ['name','age']]          #选取第0行到第2行,name列和age列的数据, 注意这里的行选取是包含下标的。    
df.loc[[2,3],['name','age']]         #选取指定的第2行和第3行,name和age列的数据    
df.loc[df['gender']=='M','name']     #选取gender列是M,name列的数据    
df.loc[df['gender']=='M',['name','age']] #选取gender列是M,name和age列的数据    

iloc,在column name特别长或者index是时间序列等各种不方便输入的情况下,可以用iloc (i = index), iloc完全用数字来定位 iloc[row_index, column_index]


df.iloc[0,0]        #第0行第0列的数据,'Snow'    
df.iloc[1,2]        #第1行第2列的数据,32    
df.iloc[[1,3],0:2]  #第1行和第3行,从第0列到第2列(不包含第2列)的数据    
df.iloc[1:3,[1,2]   #第1行到第3行(不包含第3行),第1列和第2列的数据  

索引汇总


# 选择单独的一列,返回 Serires,与 df.A 效果相当。
df['A']

# 位置切片
df[0:3]

# 索引切片
df['20130102':'20130104']

# 通过标签选择
df.loc[dates[0]]

# 对多个轴同时通过标签进行选择
df.loc[:,['A','B']]

# 获得某一个单元的数据
df.loc[dates[0],'A']
# 或者
df.at[dates[0],'A']# 速度更快的做法

# 通过位置进行选择
df.iloc[3]

# 切片
df.iloc[3:5,0:2]

# 列表选择
df.iloc[[1,2,4],[0,2]]

# 获得某一个单元的数据
df.iloc[1,1]
# 或者
df.iat[1,1]# 更快的做法

# 布尔索引
df[df.A > 0]

# 获得大于零的项的数值
df[df > 0]

# isin 过滤
df2[df2['E'].isin(['two','four'])]

赋值(缺省值NaN处理方法)

于DataFrame/Series中的NaN一般采取的方式为删除对应的列/行或者填充一个默认值


# 新增一列,根据索引排列
s1 =pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6))
df['F']=s1

# 缺省项
# 在 pandas 中使用 np.nan 作为缺省项的值。
df1 =df.reindex(index=dates[0:4], columns=list(df.columns)+['E'])
df1.loc[dates[0]:dates[1],'E']=1

# 删除所有带有缺省项的行
df1.dropna(how='any')

# 填充缺省项
df1.fillna(value=5)

# 获得缺省项的布尔掩码
pd.isnull(df1)

算数运算

两个dataframe 矩阵相加、相减、相乘、相除,会对两个矩阵行索引(包括行索引名称和行索引值)和列索引相同的两个对应元素做运算。

观察操作


# 观察开头的数据
df.head()

# 观察末尾的数据
df.tail(3)

# 显示索引
df.index

# 显示列
df.columns

# 显示底层 numpy 结构
df.values

# DataFrame 的基本统计学属性预览
df.describe()
"""
  A  B  C  D
count 6.000000 6.000000 6.000000 6.000000 #数量
mean 0.073711 -0.431125 -0.687758 -0.233103 #平均值
std 0.843157 0.922818 0.779887 0.973118 #标准差
min -0.861849 -2.104569 -1.509059 -1.135632 #最小值
25% -0.611510 -0.600794 -1.368714 -1.076610 #正态分布 25%
50% 0.022070 -0.228039 -0.767252 -0.386188 #正态分布 50%
75% 0.658444 0.041933 -0.034326 0.461706 #正态分布 75%
max 1.212112 0.567020 0.276232 1.071804 #最大值
"""

# 转置
df.T

# 根据某一轴的索引进行排序
df.sort_index(axis=1, ascending=False)

# 根据某一列的数值进行排序
df.sort(columns='B')

统计


count                      非NA值的数量
describe                  针对Series或各DataFrame列计算汇总统计
min,max                 计算最小值和最大值
argmin,argmax        计算能够获取到最小值和最大值的索引位置(整数)
idxmin,idxmax         计算能够获取到最小值和最大值的索引值
quantile                   计算样本的分位数(01) 
sum                        值的总和
mean                      值的平均数, a.mean() 默认对每一列的数据求平均值;若加上参数a.mean(1)则对每一行求平均值
media                      值的算术中位数(50%分位数)
mad                         根据平均值计算平均绝对离差
var                          样本值的方差 
std                        样本值的标准差
skew                     样本值的偏度(三阶矩)
kurt                       样本值的峰度(四阶矩)
cumsum                 样本值的累计和
cummin,cummax    样本值的累计最大值和累计最小
cumprod                样本值的累计积
diff                        计算一阶差分(对时间序列很有用) 
pct_change            计算百分数变化

# 求平均值
df.mean()
"""
A -0.004474
B -0.383981
C -0.687758
D 5.000000
F 3.000000
dtype: float64
"""

# 指定轴上的平均值
df.mean(1)

# 不同维度的 pandas 对象也可以做运算,它会自动进行对应,shift 用来做对齐操作。
s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2)
"""
2013-01-01NaN
2013-01-02NaN
2013-01-031
2013-01-043
2013-01-055
2013-01-06NaN
Freq: D, dtype: float64
"""

# 对不同维度的 pandas 对象进行减法操作
df.sub(s, axis='index')
"""
   A B C D F
2013-01-01NaN NaN NaN NaN NaN
2013-01-02NaN NaN NaN NaN NaN
2013-01-03-1.861849-3.104569-1.49492941
2013-01-04-2.278445-3.706771-4.03957520
2013-01-05-5.424972-4.432980-4.7237680-1
2013-01-06NaN NaN NaN NaN NaN
"""

函数应用


# 累加
df.apply(np.cumsum)

唯一值、值计数以及成员资格

unique方法用于获取Series中的唯一值数组(去重数据后的数组)

value_counts方法用于计算一个Series中各值的出现频率

isin方法用于判断矢量化集合的成员资格,可用于选取Series中或者DataFrame中列中数据的子集

直方图


s =pd.Series(np.random.randint(0,7, size=10))
s.value_counts()
"""
4 5
6 2
2 2
1 1
dtype: int64
String Methods
"""

字符处理


s =pd.Series(['A','B','C','Aaba','Baca', np.nan,'CABA','dog','cat'])
s.str.lower()
"""
0 a
1 b
2 c
3 aaba
4 baca
5 NaN
6 caba
7 dog
8 cat
dtype: object
"""

合并

使用 concat() 连接 pandas 对象:


df =pd.DataFrame(np.random.randn(10,4))
"""
  0  1  2  3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495
"""

pieces =[df[:3], df[3:7], df[7:]]
pd.concat(pieces)
"""
  0  1  2  3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495
"""

join 合并:


left =pd.DataFrame({'key': ['foo','foo'],'lval': [1,2]})
right =pd.DataFrame({'key': ['foo','foo'],'rval': [4,5]})
pd.merge(left, right, on='key')
"""
 key lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5
"""

追加

在 dataframe 数据后追加行


df =pd.DataFrame(np.random.randn(8,4), columns=['A','B','C','D'])
s =df.iloc[3]
df.append(s, ignore_index=True)

分组

分组常常意味着可能包含以下的几种的操作中一个或多个

依据一些标准分离数据
对组单独地应用函数
将结果合并到一个数据结构中


df =pd.DataFrame({'A': ['foo','bar','foo','bar','foo','bar','foo','foo'],  
                  'B': ['one','one','two','three','two','two','one','three'],  
                  'C': np.random.randn(8),  
                  'D': np.random.randn(8)})  
print('源数据集:\n',df)  

df1 = df.groupby('A').sum()  
print('A分组:\n',df1)  

df2 = df.groupby(['A','B']).sum()  
print('AB分组:\n',df2)  

输出结果


源数据集:  
      A      B         C         D  
0  foo    one  0.423062 -0.813870  
1  bar    one -1.058636 -0.943536  
2  foo    two -0.843569 -0.611338  
3  bar  three  0.933234 -1.425916  
4  foo    two -1.145840  0.643593  
5  bar    two  1.057359 -1.049414  
6  foo    one -0.387183  1.056451  
7  foo  three  1.923139 -1.184541  
A分组:  
             C         D  
A                        
bar  0.931957 -3.418865  
foo -0.030391 -0.909705  
AB分组:  
                   C         D  
A   B                          
bar one   -1.058636 -0.943536  
    three  0.933234 -1.425916  
    two    1.057359 -1.049414  
foo one    0.035879  0.242581  
    three  1.923139 -1.184541  
    two   -1.989409  0.032255  

分组时,组内运算
代表运算的字符串包括‘sum’、‘mean’、‘min’、‘max’、‘count’


pd3 = pd3.groupby('a').agg('sum').reset_index()  

或者自定义函数


# # 或自定义函数不需要参数,则x是serise,如果x有自定参数,则x为DataFrame  
def funname(x,name):  
    print(name)  
    print(type(x),'\n',x)  
    return 2  

pd3 = pd3.groupby('a').agg(funname,'aaa').reset_index()  

数据透视表


df =pd.DataFrame({'A': ['one','one','two','three']*3,
   'B': ['A','B','C']*4,
   'C': ['foo','foo','foo','bar','bar','bar']*2,
   'D': np.random.randn(12),
   'E': np.random.randn(12)})

# 生成数据透视表
pd.pivot_table(df, values='D', index=['A','B'], columns=['C'])
"""
C  bar foo
A B  
one A -0.773723 1.418757
 B -0.029716 -1.879024
 C -1.146178 0.314665
three A 1.006160 NaN
 B NaN -1.035018
 C 0.648740 NaN
two A NaN 0.100900
 B -1.170653 NaN
 C NaN 0.536826
"""

时间序列

pandas 拥有既简单又强大的频率变换重新采样功能,下面的例子从 1次/秒 转换到了 1次/5分钟:


rng =pd.date_range('1/1/2012', periods=100, freq='S')
ts =pd.Series(np.random.randint(0,500,len(rng)), index=rng)
ts.resample('5Min', how='sum')
"""
2012-01-01 25083
Freq: 5T, dtype: int32
"""

# 本地化时区表示
rng =pd.date_range('3/6/2012 00:00', periods=5, freq='D')
ts =pd.Series(np.random.randn(len(rng)), rng)
"""
2012-03-06 0.464000
2012-03-07 0.227371
2012-03-08 -0.496922
2012-03-09 0.306389
2012-03-10 -2.290613
Freq: D, dtype: float64
"""

ts_utc =ts.tz_localize('UTC')
"""
2012-03-06 00:00:00+00:00 0.464000
2012-03-07 00:00:00+00:00 0.227371
2012-03-08 00:00:00+00:00 -0.496922
2012-03-09 00:00:00+00:00 0.306389
2012-03-10 00:00:00+00:00 -2.290613
Freq: D, dtype: float64
"""

# 转换为周期
ps =ts.to_period()

# 转换为时间戳
ps.to_timestamp()

分类


df =pd.DataFrame({"id":[1,2,3,4,5,6],"raw_grade":['a','b','b','a','a','e']})

# 将 raw_grades 转换成 Categoricals 类型
df["grade"]=df["raw_grade"].astype("category")
df["grade"]
"""
0 a
1 b
2 b
3 a
4 a
5 e
Name: grade, dtype: category
Categories (3, object): [a, b, e]
"""

# 重命名分类
df["grade"]=df["grade"].cat.set_categories(["very bad","bad","medium","good","very good"])

# 根据分类的顺序对数据进行排序
df.sort("grade")
"""
 id raw_grade  grade
5 6   e very bad
1 2   b  good
2 3   b  good
0 1   a very good
3 4   a very good
4 5   a very good
"""

作图


ts =pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
ts =ts.cumsum()
ts.plot()

数据IO


# 从 csv 文件读取数据
pd.read_csv('foo.csv')

# 保存到 csv 文件
df.to_csv('foo.csv')

# 读取 excel 文件
pd.read_excel('foo.xlsx','Sheet1', index_col=None, na_values=['NA'])

# 保存到 excel 文件
df.to_excel('foo.xlsx', sheet_name='Sheet1')

文章有不当之处,欢迎指正,如果喜欢微信阅读,你也可以关注我的微信公众号: cplus人工智能算法后端技术,获取优质学习资源。

本人花费半年的时间总结的《Java面试指南》已拿腾讯等大厂offer,已开源在github ,欢迎star!

本文GitHub https://github.com/OUYANGSIHAI/JavaInterview 已收录,这是我花了6个月总结的一线大厂Java面试总结,本人已拿大厂offer,欢迎star

原文链接:blog.ouyangsihai.cn >> pandas教程:pandas主要功能详解


 上一篇
numpy学习4:NumPy基本操作 numpy学习4:NumPy基本操作
一、数组与标量、数组之间的运算数组不用循环即可对每个元素执行批量的算术运算操作,这个过程叫做矢量化,即用数组表达式代替循环的做法。 矢量化数组运算性能比纯Python方式快上一两个数据级。 大小相等的两个数组之间的任何算术运算都会将其运算应
下一篇 
pandas教程:series和dataframe pandas教程:series和dataframe
起步pandas是一种Python数据分析的利器,是一个开源的数据分析包,最初是应用于金融数据分析工具而开发出来的,因此pandas为时间序列分析提供了很好的支持。pandas是PyData项目的一部分。 官网:http://pandas.